
Vahe Karamian
Operating Systems

Wednesday, August 22, 2001
Dr. Lee

Project III

The purpose of project III was to simulate an interactive program which manages
main memory based on the paging system. The following are the system
specifications: We had a total of 16MB of usable memory. CPU scheduling was
implemented as a uniprocessor environment with Round Robin algorithm. Each
process runs as soon as it is allocated with main memory. Arrival and termination is
determined by user input.

The main memory management strategy is as following: We have a paging system
with page size equal to 0.5MB. Initially the system is empty, frames are initialized as
and relative page number (0-63). Upon arrival of each process, Main Memory
Management (MMM) tries to allocate this process to pages. If there is enough space
in the main memory, than we store them and update the tables. On the other hand if
there is not enough room in the memory, the process has to wait until other
processes are completed and enough number of pages are available. At the
termination of a task, all relevant pages are release.

The following data structures have been developed for this project: A Task Table
which contains the process id, the process size, the process state, the process page-
map-base, and the calculated number of pages required. We have a Master Page
Table which is an array of pointers to allocated Page Map Tables upon the arrival and
memory entry of each process. Our Page Table is a structure which is allocated
dynamically depending on the size of the required pages. The Page Table contains
the process id as well as the frame number where it is stored at in the main
memory. And finally we have our Physical Memory which is a fixed size of 32 with
two fields of process is and page number which is in accordance with the Master
Page Map Table.

The execution sequence was as follows: Initialize all the necessary data structures,
and display a menu so the user starts a process, terminate a process, or quit the
program.

The logic behind the simulation is as follows: First we initialize the necessary data
structures, then we display a menu which the user has the options of starting a
process, terminating a process, or ending the simulation. When the user select to
start a process, we get the process id from the user with the process size, we store
the information into the Task Table – and let Task Table calculate the number of
required pages for this specific task and store it internally in the Task Table. Next we
use the calculated value to determine if there are enough pages in the main memory
to be allocated for this process. If so we allocate a Page Map Table and we go to the
main memory and start storing the process into the frames and updating the PMT. At
the end of the process, we update the Master PMT a pointer to the newly allocated
PMT, and the Task Table with the Page-Map-Base. If there is not enough room in the
memory, then we add the process to the waiting queue. We display the menu again,
the user selects to Terminate a process, we get the process id which the user wishes
to terminate and we get the Page-Map-Base from the Task Table and the number of
pages which the process required, based on this information we know where to go

and how to de-allocate the memory occupied by the process. When this process is
done, we check to see if there are any processes in the waiting queue, if so we go
through them and see if we have enough frames in the main memory to use for the
waiting process, if so we allocate them to the process and continue, if not then we
don’t and continue. When the user ends the simulation, we print out all of the tables
and quit.

This project like most of my other projects has been developed under Win32 using
Visual C++. The source code may be compiled under UNIX with some minor
modifications, such as in the following example which is the only problem with this
project:

For(int i=0; i<WHATEVER; i++)
 DoSomething

For(i=0; i<WHATEVERl i++)
 DoSOmething

This is allowed in the Visual C++ environment, however, in the UNIX environment
we have to have separate variables declared for the two for loops. That is the only
change which has to be made in the program in order for it to run under the UNIX
environment.

There are only two files for this project:

taskTable.h
mmm.cpp

