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Fourier Transformation:

A very large class of important computational problems falls under the general rubic of Fourier 
transform methods or spectral methods. For some of these problems, the Fourier transform is 
simply an efficient computational tool for accomplishing certain common manipulations of data. In 
other cases, we have problems for which Fourier transform is itself of intrinsic interest. Fourier 
methods have revolutionized fields of science and engineering, from radio astronomy to medical 
imaging, from seismology to spectroscopy. Indeed. the wide application of Fourier methods must 
be credited principally to the existance of the fast Fourier transform. In other words, if you speed up 
any nontrivial algorithm by a factor of a million or so, the world will beat a path towards finding 
useful applications for it. The most direct application of the Fast Fourier Transform (FFT) are to the 
convolution or deconvolution of data, correlation and autocorrelation, optimal filtering, power 
spectrum estimation, and the computation of Fourier integrals.

Formula / Logic:

A physical process can be described either in the time domain, by values of some quantity h as 
function of time t, e.g., h(t), or else in the frequency domain, where the process is specified by 
giving its amplitude H (generally a complex number indicating phase also) as a function of 
frequency f, that is H(f), with -infinity < f < infinity. For many purposes it is useful to think of h(t) and 
H(f) as being two different representations of the same funtion. One goes back and forth between 
these two representations by means of the Fourier transformation equations,

H f( ) =
∞

∞
th t( ) e2 π. i. f. t.. d

h t( ) =
∞

∞
tH f( ) e 2 π. i. f. t.. d

If t is measured in secondes, then f in the equation is in cycler per second, or Herts (the unit of 
frequency). However, the equations work with other units as well. If h is a funtion of position x (in 
meters), H will be a function of inverse wavelength (cycles per meter), and so on. Physicists and 
mathematicians are more used to using angular frequency ω, which is given in radians per sec.

The relation between ω and f, H(ω) and H(f) is ω 2 π. f.f H ω( ) H f( )
f ω

2 π.

f
f

and therefore our previous equation would look like this

H ω( ) =
∞

∞
th t( ) e2 i. ω. t.. d

h t( ) =
∞

∞
ωH ω( ) e i ω. t.. d
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In the time domain function, function h(t) may happen to have one or more special symmetries. It 
might be purly real or purly imaginary or it might be even, h(t) = h(-t), or odd, h(t) = -h(-t). In the 
frequency domain, these symmetries lead to relationships between H(f) and H(-f). The followinf 
table gives the correspondence between symmetries in the two domains:

If ...                                          then ...
-----------------------------------------------------------------------------------------
h(t) is real                                 H(-f) = [H(f)]*
h(t) is imaginary                        H(-f) = -[H(f)]*
h(t) is even                                H(-f) = H(f) [i.e., H(f) is even]
h(t) is odd                                 H(-f) = -H(f) [i.e., H(f) is odd]
h(t) is real and even                   H(f) is real and even
h(t) is real and odd                    H(f) is imaginary and odd
h(t) is imaginary and even          H(f) is imaginary and even
h(t) is imaginary and odd           H(f) is real and odd

In image processing, and image is a function of two parameters in a plane. One possible way to 
investigate its properties is to decompose the image function using a linear combination of 
orthonormal functions. The Fourier transformation uses harmonic functions for the decomposition. 
In image processing the two-dimensional Fourier transform is defined by the integral

F u v,( )
∞

∞
x

∞

∞
xf x y,( ) e 2 π. i. x u. y v.( ).. d d

For image processing purposes it is resonable to assume that the Fourier transform of periodic 
functions always exists. An inverse Fourier transform is defined by

f x y,( )
∞

∞
v

∞

∞
uF u v,( ) e2 π. i. x u. y v.( ).. d d

Parameters (x,y) denote image co-ordinates, and co-ordinates (u,v) are called spatial frequencies. 
The function f(x,y) on the left hand side of the equation can be interpreted as a linear combination 
of simple periodic patterns e^(2πi(xu+yv)). The real and imaginary components of the pattern are 
sine and cosine functions, and the function F(u,v) is a weight function which represents the 
influence of the elementary patterns. The following properties of Fourier transformation are 
interesting from the image processing point of view: (F denote the Fourier transform)

Linearity
F{af1(x,y) + bf2(x,y)} = aF1(u,v) + bF2(u,v)
Shift of the origin in the image domain
F{f(x-a,y-b)} = F(u,v)e^(-2πi(au + bv))
Shift of the origin in the frequency domain
F{f(x,y)e^(2πi(uox+voy))} = F(u-uo,v-vo)
Symmetry: If f(x,y) is real valued
F(-u,-v) = F*(u,v) where * denotes complex conjugate.
Duality of convolution: Convolution and its Fourier transform are related by
F{(f*h)(x,y)} = F(u,v)H(u,v)
F{f(x,y)h(x,y)} = (F*H)(u,v)
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Usage:

Reconstructive image methods, such as magnetic resonance imaging (MRI) or X-ray computed 
tomography (CT), generate their images in two steps. First, the object to be imaged is probed using 
som form of physical radiation, and then the image is reconstructed from the outcome of the 
probing. Although the probing arrangements differ widely, a remarkablle large number of 
reconstructive imaging methods gather data which may be interpreted, either directly or after some 
preprocessing, as the example of the Fourier transform of the wanted image. Examples of this kind 
include MRI, spotlight-mode synthetic aperture radar, radio interferometry, CT, and various methods 
of differaction tomography. The reconstruction of all these cases mounts to computing a 2- or 3-D 
signal f from a sampled version of its Fourier transform f^, or it can be cast in this form.

Wavelet Transformation:

Like tha fast Fourier Transform (FFT), the discrete wavelet transform (DWT) is a fast, linear 
operation that operates on a data vector whose length is an integer power of two, transforming it 
into a numerical different vector of the same length. Also like the FFT, the wavelet transform is 
invertible and in fact orthogonal - the inverse transform, when viewed as a big matrix, is simply the 
transpose of the transform. Both FFT and DWT, therefore, can be viewed as a rotation in function 
space, from the input space (or time) domain, where the basis functions are the unit vectors ei, or 
Dirac delta functions in the continuum limit, to a different domain. For the FFT, this new domain has 
basis functions that are familiar sines and cosines. In the wavelet domain, the basis functions are 
somewhat more complicated and have the fanciful names "mother functions" and "wavelets." 
Wavelets represent another approach to decomposing complex signals into sums of basis 
functions, in this respect they are similar to Fourier decomposition approaches, but they have an 
important difference. 

Fourier functions are localized in frequency but not in space, in the sense that they isolate 
frequencies, but not isolated occurences of those frequencies (that is, not throughout the domain of 
interest of the signal). This means that small frequency changes in a Fourier transform will produce 
changes everywhere in the time domain. Wavelets are local in both frequency (via dialations) and 
time (via translation), because of this they are able to analyze data at different scales or resolutions 
much better than simple since and cosine can. Modeling a spike in a function (a noise dot, for 
example) with a sum of infinite functions wil be hard because of its strict locality, while functions that 
are already local will be naturally suited to the task. This means that such functions lend themselves 
to more compact representation via wavelets, sharp spikes and discontinuities normally take fewer 
wavelet bases to represent than if sine-cosine basis functions are used. The wavelet basis is then 
provided by the functions

Φ s l,( ) x( ) 2

s
2 Φ 2 s x. l.

Here the scale factor s indicates the wavelet's width (a power of2) and the location index l its 
position (and integer).

Note that Φ(s,l) are self-similar and are selected to be orthonormal, so

Φ s1 l1, Φ s2 l2,. d 0 if s1 s2 or l1 l2
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and it is thus possible to represent other functions as a linear combination of the Φ(s,l).
Wavelets have been used with enormous success in data compression, for example, in fingerprint 
data reduction, and in image noise suppression. It is possible to erase to zero the contribution of 
wavelet components that are "small" and correspond to noise without erasing the important small 
detail in the underlying image. Thus, there is noise suppression without the bluring characteristics 
of Fourier filters.

Hough Transform:

The Hough Transform has been developed by Paul Hough in 1962 and patented by IBM. It became 
in the last decade a standard tool in the domain of artificial vision for the recognition of straight 
lines, circles and ellipses. The Hough Transform is particularly robust to missing and contaminated 
data. It can also be extended to non-linear characteristic relations and made resistant to noise by 
use of anti-aliasing techniques.

The Hough Transform has been originally developed to detect analytically representable features in 
binarized images, such as straight lines, circles or ellipses. The characteristic relation of the 
sought-for feature is back-projected in the parameter space. Each set pixel (xi,yi) defines a relation 
between the parameters of the characteristic relation which can be represented as a curve in the 
parameter space. Each pixel (xi,yi) along the lines will generate by back-projection a straight line of 
equation . These lines intersect at the locus characterizing the line. All points belonging to the curve 
have been mapped into a single location in the transformed space, allowing an easier detection. 
The Hough transform involves a peak finding algorithm to detect the features. A noteworthy 
characteristic of the HT is that it does not require the connectedness of the co-linear points. 
Segmented lines will generate a peak in the parameter space and the lacking segments simply do 
not contribute to the transform. On the other side, artifact peaks might be generated in presence of 
noise and high density of features by coincidental intersections in the parameter space. To a certain 
extent, artifacts can be avoided by using anti-aliasing techniques and adapted peak finding 
algorithms. Also the HT treats each image point independently, allowing a parallel implementation of 
the method. 

If an image consists of objects with known shape and size, segmentation can be viewed as a 
problem of finding this object within an image. Typical tasks are to locate circular pads in printed 
circuit boards, or to find objects to specific shapes in aerial or satellite data, etc. One of many 
possible ways to solve these problems is to move a mask with an appropriate shape and size along 
the image and look for correlation between the image and the mask. Unfortunately, the specified 
mask often differs too much from the object's representation in the processed data, because of 
shape distortion, rotation, soom, etc. One very effective method that can solve this problem is the 
Hough transform, which can be used successfully in segmentation of overlapping or semi-occluded 
objects.

The original Hough transform was designed to detect straight lines and curves, and this original 
method can be used if analytic equations of object borderlines are known, no prior knowledge of 
region position is necessary. A big advantage of this approach is robustness of segmentation 
results; that is, segmentation is not too sensitive to imperfect data or noise. Neverthless, it is often 
impossible to get analytic expressions describing boarders.
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The basic idea of the method can be seen from the simple problem of detecting a straight line in an 
image. A straight line is defined by two points A = (x1,y1) and B = (x2,y2). All straight lines going 
through the point A are given by the expression y1 = kx1 + q for some values k and q. this means 
that he same equation can be interpreted as an equation in the parameter space k, q; all the 
straight lines going though the point A are then represented by the equation q = -x1k + y1. Straight 
lines going through the point B can likewise be represented as q = -x2k + y2. The only common 
point of both straight lines in the k, q parameter space is the point which in the original image space 
represents the only existing straight line connecting point A and B.

This means that any straight line in the image is represented by a single point in the k, q parameter 
space and any part of this straight line is transformed into the same point. The main idea of line 
detection is to determine all the possible line pixels in the image, to transform all lines that can go 
through these pixels into corresponding points in the parameter space, and to detect the points 
(a,b) in the parameter space that frequently resulted from the Hough transform of lines y = ax + b in 
the image.

The Hough technique is useful for computing a global description of a feature(s) (where the number 
of solution classes need not be known a priori), given (possibly noisy) local measurements. The 
motivating idea behind the Hough technique for line detection is that each input measurement (e.g. 
coordinate point) indicates its contribution to a globally consistent solution (e.g. the physical line 
which gave rise to that image point). As a simple example, consider the common problem of fitting a 
set of line segments to a set of discrete image points (e.g. pixel locations output from an edge 
detector). The diagram below shows some possible solutions to this problem.

(a) Coordinate points.   (b) and  (c) Possible straight line fittings.

We can analytically describe a line segment in a number of forms. However, a convenient equation 
for describing a set of lines uses parametric or normal notion:

x cos θ( ). y sin θ( ). rx cos θ( ). y sin θ( ). r

where r is the length of a normal from the origin to this line and θ is the orientation of r with respect 
to the X-Axis. For any point (x,y) on this line, r and θ are constant.

Parametric description of a straight line. 
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In an image analysis context, the coordinates of hte points of edge segments (xi,yi) in the image are 
known and therefore serve as constants in the parametric line equation, while r and θ are the 
unknown variables we seek. If we plot the possible (r,θ) values defined by each (xi,yi), points in 
cartesian image space map to curves (i.e. sinusoids) in the polar Hough parameter space. This 
point to curve transformation is the Hough tranformation for straight lines. When viewed in Hough 
parameter space, points which are collinear in the cartesian image space become readily apparent 
as they yield curves which intersect at a common (r,θ) point.

Algorithm: Curve detection using the Hough transform
Consider an arbitrary curve represented by an equation f(x,a)=0, where a is the vector of curve 
parameters.

1. Quantize parameter space within the limits of parameters a. The dimensionality n of the 
parameter space is given by the number of parameters of the vector a.

2. Form an n-dimensional accumulator array A(a) with structure matching the quantization of 
parameter space; set all elements to zero.

3. For each image point (x1,x2) in the appropriately thresholded gradient image, increase all 
accumulator cells A(a) if f(x,a) = 0

A a( ) A a( ) ∆A for all a inside the limits used in step 1.

4. Local maxima in the accumulator array A(a) corresponding to realizations of curves f(x,a) that are 
present in the original image.

The transform is implemented by quantizing the Hough parameter space into finite intervals or 
accumulator cells, i.e. multidimensional array. As the algorithm runs, each (xi,yi) is transformed into 
a discretized (r,θ) curve and the accumulator cells which lie along this curve are incremented. 
Peaks in the accumulator array represent strong evidence that a corresponding straight line exists 
in the image.

We can use this same procedure to detect other features with analytical descriptions. For instance, 
int the case of circles, the parametric equation is

x a( )2 y b( )2 r2

where a and b are the coordinates of the center of the circle, and r is the radius. In this case, the 
computational complexity of the algorithm begins to increase as we now have three coordinates in 
the parameter space and a 3D accumulator. In general, the computation and the size of the 
accumulator array increase polynomially with the number of parameters. Thus, the basic Hough 
technique described hee is only practical for simple curves.

The randomized Hough transform offers a different approach to achieve increased efficiency; it 
randomly selects n pixels from the edge image and determines n parameters of the detected curve 
followed by incrementing a single accumulator cell only. Recent extensions to the randomized 
Hough tranform use local information about the edge image and apply Hough transform process to 
a neighborhood of the edge pixel. If the parametric representations of the desired curves or region 
boarders are known, this method works very well, but unfortunately this is not often the case. The 
desired region boarders can rarely be described using a parametric boundary curve with a small 
number of parameters; in this case, a generalized Hough transform can offer the solution.
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This method constructs a parametric curve, region boarder description based on sample situations 
detected in the learning stage. Assume that shape, size, and rotation of the desired region are 
known. A reference point x^R is chosen at any location inside the sample region, then an arbitrary 
line can be constructed starting at this reference point aiming in the direction of the region border. 
The border direction, edge direction is found at the intersection of the line and the region border. A 
reference table (R-Table) is constructed, and intersection parameters are sorted as a function of the 
border direction at the intersection point; using different lines aimed from the reference point, all the 
distances of the reference point to region borders and the border directions at the intersections can 
be found. The resulting table can be ordered according to the border directions at the intersection 
points.

This implies that there may be more than one (r,α) pair for each φ that can determine the 
co-ordinates of a potential reference point.

φ1 r1
1 α1

1
, r1

2 α1
2

,, ..., r1
n1 α1

n1
,,

φ2 r2
1 α2

1
, r2

2 α2
2

,, ..., r2
n1 α2

n1
,,

φ3 r3
1 α3

1
, r3

2 α3
2

,, ..., r3
n1 α3

n1
,,

φk rk
1 αk

1
, rk

2 αk
2

,, ..., rk
n1 αk

n1
,,

Assuming no rotation and known size, remaining description parameters required are the 
co-ordinates of the reference point

x1
R x2

R,

If size and rotation of the region may vary, the number of parameters increase to four.

Each pixel x with a significant edge in the direction φ(x) has co-ordinates of potential reference 
points

{x1 + r(φ)cos[α(φ)], x2 + r(φ)sin[α(φ)]}

This must be computed for all possible values of r and α according to the border direction φ(x) given 
in the R-Table. The following algorithm presents the generalized Hough transform in the most 
genral of cases in which rotation (τ) and size (S) may both change. If either there is no change in 
rotation (τ=0) or there is no size change (S=1), the resulting accumulator data structure A is 
simpler.
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Generalized Hough transform

1. Construct and R-Table description of the desired object.

2. Form a data structure A that represents the potential reference points A(x1,x2,S,τ) set all 
accumulator cell values A(x1,x2,S,τ) to zero.

3. For each pixel (x1,x2) in a threshold gradient image, determine the edge direction Φ(x); 

find all potential reference points x^R and increase all A(x^R,S,τ), A(x^R,S,τ) = A(x^R,S,τ) + ∆A 
for all possible values of rotation and size change,

x1
R x1 r φ( ) S. cos α φ( ) τ( ). x2

R x2 r φ( ) S. sin α φ( ) τ( ).

4. The location of suitable regions is given by local maxima in the A data structure.

As mentioned before, the Hough transform was initially developed to detect analytically defined 
shapes, such as lines, circles, or ellipses in general images, and the generalized Hough transform 
can be used to detect arbitrary shapes. However, even the generalized Hough transform requires 
the complete specification of the exact shape of the target object to achieve precise segmentation. 
Therefore, it allows detection of objects with complex but pre-determined shapes.

Chapter 4 Summary:

Image Pre-processing
-Operations with images at the lowest level of abstraction, both input and output are intensity 
images, are called pre-processing.
-The aim of pre-processing is an improvement of the image data that suppresses unwilling distortion 
or enhance some image features important for further processing.
-Four basic type of pre-processing methods:

(1) Brightness transformation
-There are two classes of pixel brightness transformation
(A) Brightness corrections, modify pixel brightness taking into account its original brightnes and its 
position in the image.
(B) Gray-scale transformations, change brightness without regard to position in the image.
-Frequently used brightness transformations include:
*Brightness thresholding
*Histogram equalization
*Logarithmic gray-scale transforms
*Look-up table transforms
*Pseudo-color transforms
-The goal of histogram equalization is to create an image with equally distributed brightness levels 
over the whole brightness scale.
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(2) Geometric transformation
-Geometric transformation permit the elimination of the geometric distortions the occure when and 
image is captured. A geometric transform typically consists of two basic steps:
(A) Pixel co-ordinate transformations, map the co-ordinates of the input image pixel to a point in the 
output image, affine and bilinear tranforms are frequently used
(B) Brightness interpolation, the output point co-ordinates do not usually match the digital grid after 
the transform and interpolation is employed to determine brightness of output pixels; 
nearest-neighbor, linear, and bi-cubic interpolations are frequently used.

(3) Local neightborhood pre-processing
-Local pre-processing methods use a small neighborhood of a pixel in an input image to produce a 
new brightness value in the output image. For the pre-processing goal, two groups are common: 
smoothing and edge detection.
(A) Smoothing aims to suppress noise or other small flunctuations in the image; it is equivalent to 
suppressing high frequencies in the GFourier transform domain. Smoothing approaches are based 
on direct averaging blur image edges. More sophisticated approaches reduce bluring by averaging 
in homogenous local neighborhoods.
(B) Edge is a property attached to an individual pixel and has two components, magnitude and 
direction. Gradient operators determine edges, locations in which the image function undergoas 
rapid changes; they have a similar effect to suppressing low frequencies in the Fourier transform 
domain. Most gradient operator can be expressed using convolution masks, examples include 
Roberts, Laplace, Prewitt, Sobel, Robinson, and Kirsch operators. The main disadvantage of 
convolution edge detectors is their scale dependence and noise sensitivity. There is seldom a 
sound reson for choosing a particular size of a local neightborhood operator
-Other local pre-processing operations include line finding, line thinning, line filling, and interest 
point detection

(4) Image restoration
-Image restoration metods aim to suppress degradation using knowledge about its nature. Most 
image restoration methods are based on deconvolution applied globally to the entire image
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Chapter 5 Summary:

Image Segmentation
-The main goal of image segmentation is to divide an image into parts that have a strong correlation 
with objects or areas of the real world depicted in the image. Segmentation methods can be divided 
into three groups: thresholding, edge-based segmentation and region-based segmentation. Each 
region can be represented by its closed boundary, and each closed boundary describes a region. 
Image data ambiguity is one of the main segmentation problems, often accompanied by information 
noise. The more a priori information is available to the segmentation process, the better the 
segmentation results that can be obtained.
(A) Thresholding
-Thresholding represents the simplest image segmentation process, and it is computationally 
inexpensive and fast. A brightness constant called a threshold is used to segment objects and 
background. Single thresholds can either be applied to the entire image, global thresholding, or can 
vary in image parts, local thresholding. Only under very unusual circumstances can thresholding be 
successful using a single threshold for the whole image.
-Optimal thresholding determines the threshol as the closest gray-level corresponding to the 
minimum probability between the maxima of two or more normal distributions. Such thresholding 
results in minimum error segmentation.

(B) Edge-based image segmentation
-Edge based segmenation relies on edges found in an image by edge detecting operators, these 
edges mark image locations of discontinuities in gray-level, color, texture, etc. The most common 
problem of edge-based segmentation, cause by image noise or unsuitable information in an image, 
are an edge presence in locations where there is no border, and no edge presence where a real 
border exists.
-Edge relaxation, edge properties are considered in the context of neighboring edges. If sufficient 
evidence of the border exists, local edge strength increase and vice versa. Using a global relaxation 
(optimization) process, continuous borders are constructed.
-Three types of region boarders may be formed: inner, outer, and extended. The inner boarder is 
always part of a region, but the outer border never is. Therefore, using inner or outer border 
definition, two adjacent regions never have a common border. Extended borders are defined as 
single common borders between adjacent regions still being specified by standard pixel 
co-ordinates.
-Hough transform segmentation is applicable if objects of known shape are to be detected within an 
image. The Hough transform can detect straight lines and curves, object borders, if their analytic 
equations are known. It is robust in recognition of occluded and noisy objects.

(C) Region-based image segmentation
-Region growing segmentation should satisfy the following condition of complete segmentation, 
euqtion (5.1), and maximum region homogeneity, equations (5.31), and (5.32).

-Three basic approaches to region growing exist: region merging, region spliting, and 
split-and-merge region growing
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(1) Region merging starts with an oversegmented image which regions satisfy the equations above.
(2) Region splitting is the opposite of region merging. Region splitting begins with an 
undersegmented image which does not satisfy conditions in the equation (5.31). Therefore, the 
existing image regions are sequentially plit to satisfy conditions (5.1), (5.31), and (5.32)
(3) A combination or splitting and merging may result in a method with the advantages of both other 
approaches. Split-and-merge approaches typically use pyramid image representations. Because 
both split-and-merge processing options are available, the starting segmentation does not have to 
satisfy either condition (5.31) or (5.32)

Chapter 6 Summary:

Shape representation and description
-Region description generates a numeric feature vector or a non-numeric syntactic description 
world, which characterizes properties, for exmaple shape, of described region. While many practical 
shape description methods exist, there is no generally accepted methodology of shape description. 
Further, it is not known what is important in shape.
-The shape classes represent the generic shapes of the objects belonging to the same classes. 
Shape classes should emphasize shape differences among classes, while the shape variations 
within classes should not be reflected in the shape class description
-Region identification assigns unique labels to image regions. If nonrepeating ordered numerical 
labels are used, the largest integer label gives the number of regions in the image.
-Counter-based shape descriptors
-Chain codes describe an object by a sequence of unit-size line segment with a given orientation, 
called Freeman's code.
-Simple geometric border representations are based on geometric properties of described regions
*Bondary length
*Curvature
*Bending Energy
*Signature
*Chord distribution
-Fourier shape descriptors can be applied to closed curves, co-ordinates of which can be treated as 
periodic signals.
-Region-based shape descriptors
-Simple geometric descriptors use geomertic properties of described regions:
*Area
*Euler's number
*Projections
*Height, width
*Eccentricity
*Elongatedness
*Rectangularity
*Direction
*Compactness
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-More complex shapes can be described using region decomposition into smaller and simpler 
sub-regions. Objects can be represented by a planar graph with nodes representing sub-regions 
resulting from region decomposition. Region shape can then be described by the graph properties. 
There are two general types:

(1) Region thinning, leads to the region skeleton that can be described by a graph. Thinning 
procedures often use a medial axis transform to construct a region skeleton. Under the medial axis 
definition, the skeleton is the set of all region points which have the same minimum distance from 
the region boundary for at least two separate boundary points.
(2)Region decomposition, considers shape recognition to be a hierarchical process. Shape 
primitives are defined at the lower level, primitives being the simplest elements which form the 
region. A graph is constructed at the higher-level, nodes result from primitives, arcs describe the 
mutual primitive relations.
-Shape classes represent the generic shapes of the objects belonging to the class and emphasize 
shape difference among classes. A widely used representation of in-class shape variations is 
determined of class-specific regions in the feature space.
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